Fiber Fuse: its Actions, Behaviors and Control methods

Shin-ichi TODOROKI
NIMS, Japan

Slide 1

Introduction
A 2009 Nobelist's work (Physics)

Slide 3

Introduction
Research papers on Fiber fuse

Slide 2

Introduction
Loss reduction of silica fibers

Slide 4
Fiber Fuse: its Actions, Behaviors & Control methods

Behaviors
- Why transparent fibers break down?
- Why it propagates to the light source?
- Why the transparent waveguide absorbs light?
- Why it propagates quite slowly?

Actions
- What's happening in the spot?

Control
- How we eliminate the breakdown?

Direction
- Dissipative soliton consuming the energy of laser light

Heat-up
- Why the transparent waveguide absorbs light?

Velocity
- Why it propagates quite slowly?
Heat-up

Non-linear light absorption

\[\text{SiO}_2 \xrightarrow{\Delta} \text{SiO} + \frac{1}{2}\text{O}_2 \]

![Graph showing loss vs. temperature](image)

- Silica fiber (1 m) Koshyp (’88)

Heat-up

Color temperature estimation

Ex: 1.08 µm silica glass fibers

1: 38 W, 10500 K
2: 9 W, 7900 K
3: 3 W, 4700 K

E. M. Dianov (’06)

IEEE PTL, 18 [6] 752

Behaviors

Why transparent fibers break down?

Direction

Dissipative soliton consuming the energy of laser light

Heat-up

Thermal decomposition products absorb light.

Velocity

Why it propagates quite slowly?

Velocity

Melt → Vaporize → Solidify

\[\approx \text{W} \]

\[\approx 1\text{m/s} \]
Slide 13

Velocity

Propagation speed vs. Light power

SMF-28

<table>
<thead>
<tr>
<th>Power density, P/mW\cdotcm$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>Fusing speed, v/m sec$^{-1}$</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

Slide 14

Behaviors

Why transparent fibers break down?

Direction
Dissipative soliton consuming the energy of laser light

Heat-up
Thermal decomposition products absorb light.

Velocity
It propagates via melting, vaporizing & consolidation.

Slide 15

Fiber Fuse: its Actions, Behaviors & Control methods

Behaviors

It propagates like grass fire consuming light energy.

Actions

What’s happening in the spot?

Control
How we eliminate the breakdown?

Slide 16

Actions

What’s happening in the spot?

Damage

What is left after the track of fiber fuse?

In situ image
What is told by ultra-high speed photos?

Periodicity

Why the voids look like a bullet?
What changed after fusing?
for silica glass fibers:

- O_2 gas in the voids
 \rightarrow Raman microscopy (Kashyap '88)
 $SiO_2 \rightarrow SiO + \frac{1}{2}O_2$
- Densification
 \rightarrow refractive index increase (Dianov '92)
 $\Delta n_{\text{max}} \sim 0.012$

Laser power dependence

<table>
<thead>
<tr>
<th>Laser Power</th>
<th>SMF-28 1480 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 W</td>
<td></td>
</tr>
<tr>
<td>7 W</td>
<td>$\leftrightarrow 20 \mu m$</td>
</tr>
<tr>
<td>5 W</td>
<td></td>
</tr>
<tr>
<td>3.5 W</td>
<td></td>
</tr>
</tbody>
</table>

In situ image

Ultra-high speed videography

- 4 μs / frame
- 1 μs-exposure w/ ND filters ($\times 16$)
- 128\times16 pixels
- Wavelength: 380–790 nm
 (as in 2004)

What's happening in the spot?
It leaves periodic & bullet-like voids in core region.

In situ image
What is told by ultra-high speed photos?

Periodicity
Why the voids look like a bullet?
Slide 21

In situ image

Periodicity appears with a tail

<table>
<thead>
<tr>
<th>Power (W)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Distance, z/µm

Slide 22

In situ image

Moves with constant velocity during one void generation (20 µs)

<table>
<thead>
<tr>
<th>Power (W)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Slide 23

Actions

What's happening in the spot?

Damage

It leaves periodic & bullet-like voids in core region.

In situ image

It moves with constant speed during 1 void generation.

Periodicity

Why the voids look like a bullet?

Slide 24

Periodicity

One day, I had an inspiration.
Periodicity

Sample preparation

Periodicity

Sorting by time reveals the action

Actions
What's happening in the spot?

Damage
It leaves periodic & bullet-like voids in core region.

In situ image
It moves with constant speed during 1 void generation.

Periodicity
Plasma instability makes the tail pinched off & pressed.

OVERVIEW
Fiber Fuse: its Actions, Behaviors & Control methods

Behaviors
It propagates like grass fire consuming light energy.

Actions
Running plasma leaves a void train in the core region.

Control
How we eliminate the breakdown?
Slide 29

Control

How we eliminate the breakdown?

Stop the spread

How we terminate the running plasma?

First extinguish

How we detect the emergence of the fuse?

Nip in the bud

How we eliminate the excess light?

Slide 30

Stop the spread

by destabilizing the plasma

- **Light source**
- **Device**

- Mode field expansion
 - Hand ('89) ⇒ Yanagi ('03)
- Pressure leakage (?)
 - Takenaga ('08)

Slide 31

Control

How we eliminate the breakdown?

Stop the spread

by inserting a device that destabilizes the propagation

First extinguish

How we detect the emergence of the fuse?

Nip in the bud

How we eliminate the excess light?

Slide 32

First extinguish

Freq. analysis of reflected light

- Intensity increase
- Reflection from voids, \(f_c = \nu/p \)
- Doppler shift, \(f_D = 2n\nu/\lambda \)

Abedin ('09)

Control

How we eliminate the breakdown?

Stop the spread
by inserting a device that destabilizes the propagation

First extinguish
after detecting a special signal from the reflected light

Nip in the bud

How we eliminate the excess light?

Slide 33

Nip in the bud

Description in a patent

• Light absorbing nano-particles in a thin film
 ⇒ Heat-induced light scattering

Slide 35

Nip in the bud

Devices: Ideals vs. Realized

Optical limiters

Input

Output

Optical fuse

Input

Output

Dynamic Attenuator - Preliminary

Input

Output

Optical limiters are realized using nano technology.

Slide 34

Control

How we eliminate the breakdown?

Stop the spread
by inserting a device that destabilizes the propagation

First extinguish
after detecting a special signal from the reflected light

Nip in the bud

Slide 36
Summary

Fiber Fuse: its Actions, Behaviors & Control methods

Behaviors

It propagates like grass fire consuming light energy.

Actions

Running plasma leaves a void train in the core region.

Control

We have symptomatic treatments, but cannot say safe.

References

2. Movies: http://www.youtube.com/tokyo1406