Ultrahigh-speed videography of fiber fuse propagation: a tool for studying void formation

Shin-ichi TODOROKI

Advanced Materials Laboratory/NIMS Japan

Slide 1

Introduction

• Found in 1987 (R.Kashyap & K.J.Blow)
• Optical discharge runs toward the light source leaving periodic voids

Slide 2

Fiber fuse

Videography

How was the fire-ball captured?

Setup

What is the trap like?

Movie

How its behavior changed with the pumping power?

Analysis

What is found out?

Slide 3

OVERVIEW

Ultrahigh-speed videography of fiber fuse propagation

How was the fire-ball captured?

Setup

What is the trap like?

Movie

How its behavior changed with the pumping power?

Analysis

What is found out?

Slide 4
Setup

- 4 µs/frame
- 1 µs-exposure with ND filters (×16)
- 128×16 pixels

Movie

- 4 µs/frame
- 1 µs-exposure with ND filters (×16)
- 128×16 pixels

FYI

Current status of high-speed videography

Todoroki (ECOC 2004 PD)
Bufetov et al. (OFC 2005)

<table>
<thead>
<tr>
<th>Interval</th>
<th>Exposure</th>
<th>Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 or 70 µs/frame</td>
<td>10 µs + ND filters</td>
<td>1024×128</td>
</tr>
<tr>
<td>1 µs</td>
<td>+ black illumination</td>
<td></td>
</tr>
<tr>
<td>128×16 pixels</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Analysis

Distance, z/µm

- 500 µm
- 0.77 m/s
- 0.61 m/s
- 0.41 m/s
- 0.33 m/s
- 1.5 W
- 2 W
Slide 9

Analysis

Fusing speed & Void interval

![Graph showing fusing speed and void interval](image)

Slide 10

Videography

How was the fire-ball captured?

Setup

1 µs-exposure & x16 ND filters helped to catch it.

Movie

Pumping with >2W makes intensity profile asymmetric.

Analysis

Asymmetric optical discharge leaves periodic voids.

Slide 11

Front void

What is left behind at the fire-ball’s position?

Photography

How the samples were prepared?

Comparison

What is related with the asymmetry of the discharge?

Cavity size

How it changes with increasing the pumping power?

Slide 12

Photography

Sample preparation

- observed as it is focused inside

- 1480nm Fiber Laser

 - 9W

 - 1.5W

 - <100µs

- SMF-28
Comparison

Slide 13

Comparison

What we can say during quenching

- Decay time of laser:
 $\Rightarrow < 100 \mu s$ (observed)
 $\Rightarrow < \text{one-void-formation}(\sim 20 \mu s)$

- Structural relaxation may occur, but expected to be small.
 $\Rightarrow \text{large } \frac{\partial \eta}{\partial T}\text{ of silica glass}$

Slide 15

Comparison

Slide 14

Comparison

Cavity size

Slide 16
Front void

What is left behind at the fire-ball’s position?

Photography
Prepared by sudden power cut after fiber-fusing.

Comparison
Asymmetric discharge leaves a tailed void.

Cavity size
Void radius is constant & independent of input power.

Archaeology

What is told from the photos of left behind?

Periodicity
What comes into view considering periodicity?

Reconstruction
What is extracted from a series of photographs?

Mechanism
Why the regular voids look like bullets?

Periodicity

7W
1480nm

Periodic voids
One per 20 µs

Uniform velocity

Reconstruction

• These are NOT in-situ

• but seem that the void casts off its tail → one of regular voids

• Assuming that each structure is sufficiently the same as that before quenching
Mechanism

Formation of a bullet

- Distance from the top
- Temperature
- Viscosity

Archaeology

What is told from the photos of left behind?

- Periodicity
 - Normalized position is the key for sorting by time.

- Reconstruction
 - Extended tail is casted off to be one of regular voids.

- Mechanism
 - Optical discharge pushes casted tail to make a bullet.

SUMMARY

Ultrahigh-speed videography of fiber fuse propagation

- Videography
 - >2W-pump \Rightarrow asymmetric discharge & periodic voids

- Front void
 - Asymmetric discharge leaves a tailed void.

- Archaeology
 - Extended tail is casted off to be one of periodic voids.
 - Optical discharge pushes casted tail to make a bullet.
Acknowledgement

- Mr. Kazuhide HANAKA, Mr. Akira SAKAMAKI
- Dr. Satoru INOUE