Formation of Optical Coupling Structure between Silica Glass Waveguides and Molten Tellurite Glass Droplet

S. Todoroki (聳 眞市), A. Nukui & S. Inoue

Advanced Material Laboratory NIMS Japan

\[l \sim 0.6 \text{ mm} \rightarrow v \sim 0.007 \text{ mm}^3 = 7 \text{ nl} \]
Optical Coupling Structure btw Silica Fibers & Tellurite Glass.

Fabrication method

How did we make it? What is the advantage?

Optical performance

How much is the loss? Is it adequate?

Possible application

What can it be used for?
Fabrication method

Property gap btw the two

<table>
<thead>
<tr>
<th>Thermal expansion coefficient ($\times 10^{-7}/^\circ C$)</th>
<th>Refractive index</th>
</tr>
</thead>
<tbody>
<tr>
<td>170</td>
<td>80TeO₂-20ZnO glass 2.08</td>
</tr>
<tr>
<td>~6</td>
<td>Silica glass 1.46</td>
</tr>
<tr>
<td>26.3</td>
<td>Silicon —</td>
</tr>
</tbody>
</table>

\[\uparrow \text{OK!} \]

- **PLC**: SiO₂ layer $\sim 30\mu m$ over Si substrate

Fresnel refraction $\sim 0.1\text{dB} \times 2$
Fabrication method

- **Spot heating**: 10mm, upto 500°C
- **Micro sampling**: automatic chopsticks:-)
- **glass**: $80\text{TeO}_2-20\text{ZnO}$
 - 100TeO_2
 - $(in\ mol\%)$
- **fibers are cut by** a commercial cleaver
 - $(\angle = 90 \pm 0.6^\circ)$

Equipment

- Pt plate + Heater
- Fiber Holders
- CCD Cameras
- (1) (2) (3)
Fabrication method

Temperature control is critical

- too high

- too low
Measuring internal reflection

- Valid for Single-mode fibers
- resolution: 20µm
Optical performance

Internal reflection distribution

No reflection due to precipitates!
Optical performance

Insertion loss: air vs. glass

Insertion Loss, ℓ/dB

Distance btw fibers, d/mm

$\lambda=1.31\mu m$

with air

with glass

Pull length

80TeO$_2$-20ZnO
Optical performance

Ins. loss: value & variation

- Large loss value
 - Lack of waveguide structure

Variation
- in Loss (●●) : Disalignment
- in Distance (↔) : Solidification during pulling

Emmision of Er$^{3+}$, EX: 800nm
Fabrication method

100TeO₂ is precipite-free?

Not yet checked by XRD, but...

- ✔ No light reflection from inside
- ✔ Insertion loss: same as 80TeO₂–20ZnO
- ✔ Can survive the bending test

⇒ No harmful precipitates for optical applications
Quenching rate is very high!

TeO$_2$—ZnO by Marinov et al. ('72)

This work

Glass forming region by Burger et al. ('92)

Twin—roller

Copper mold

Carbon mold

TeO$_2$ 100%

Cooling rate (K/s)

103 102 101 1

10$^{-1}$ 10$^{-2}$

Assuming precipitate-free,

Quenched at

$\sim 10^3$ K/s.

TeO$_2$ (mol%)

Zn$_2$Te$_3$O$_8$

Temperature (°C)

400 600 800

60 70 80 90 100

\triangleright Quenched at

$\sim 10^3$ K/s.
Fabrication method

Heat history

Merit: Can suppress precipitation

☞ Wider choice in Composition
"Nature chose ones to be fiber, but the others can join fibers."

S. Todoroki (2002)
Possible application

No waveguide, No use.

Demerit: Lack of waveguide structure

To be improved:

- Insertion loss \(\downarrow\)
- Var. of Insertion loss \(\downarrow\)
Possible application for reducing insertion loss

- Make a waveguide structure afterwards
 - by fs-laser pulse irradiation
- Use TEC fibers
Possible application for reducing variation in loss

- More rigid void is needed.

☞ How about "Melt on chip" like soldering?

Planar Lightwave Circuit vs. Electric Circuit
Possible application

Stress tolerance test

• Tellurite glass melt is inserted into Silica glass ferule (ID : $126^{+3}_{-0} \mu m$) at $800^\circ C$

☞ No fracture if $\ell \leq 2$mm

• Can insert melt into sub-mm void
Possible application

How about microcavity?

Spillane et al.,

- Silica glass microsphere
- Ultra-low threshold (∼ 60 μW) for Raman lasing

- Existing microspheres are to be improved.
 - Small Q-value due to small refractive index
 - Ununiformity of reheated glass powder
 - Fast deterioration of the dye

☞ Tellurite glass microcavity?
SUMMARY

Optical Coupling Structure btw Silica Fibers & Tellurite Glass.

Fabrication method

Even TeO$_2$ melt is quenched without precipitation.

Optical performance

~ 10dB loss can be improved by n-modulation.

Possible application

Hybrid device where soft glass meets a-silica device.